
www.manaraa.com

University of South Carolina
Scholar Commons

Theses and Dissertations

2014

Web Service Transaction Correctness
Aspen Olmsted
University of South Carolina - Columbia

Follow this and additional works at: http://scholarcommons.sc.edu/etd

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.

Recommended Citation
Olmsted, A.(2014). Web Service Transaction Correctness. (Doctoral dissertation). Retrieved from http://scholarcommons.sc.edu/etd/
2728

http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/2728?utm_source=scholarcommons.sc.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/2728?utm_source=scholarcommons.sc.edu%2Fetd%2F2728&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu

www.manaraa.com

WEB SERVICE TRANSACTION CORRECTNESS

by

Aspen Olmsted

Bachelor of Science

State University of New York, 1989

Master of Business Administration

University of South Carolina, 2007

Master of Science

College of Charleston, 2009

Submitted in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy in

Computer Science

College of Engineering and Computing

University of South Carolina

2014

Accepted by:

Csilla Farkas, Major Professor

Michael Hodgson, Committee Member

Michael Huhns, Committee Member

Manton Matthews, Committee Member

John Rose, Committee Member

Lacy Ford, Vice Provost and Dean of Graduate Studies

www.manaraa.com

ii

© Copyright by Aspen Olmsted, 2014

All Rights Reserved.

www.manaraa.com

iii

Abstract

In our research we investigate the problem of providing consistency, availability

and durability for Web Service transactions. First, we show that the popular lazy replica

update propagation method is vulnerable to loss of transactional updates in the presence

of hardware failures. We propose an extension to the lazy update propagation approach to

reduce the risk of data loss. Our approach is based on the ”buddy” system, requiring that

updates are preserved synchronously in two replicas, called buddies. The rest of the

replicas are updated using lazy update propagation protocols. Our method provides a

balance between durability (i.e., effects of the transaction are preserved even if the server,

executing the transaction, crashes before the update can be propagated to the other

replicas) and efficiency (i.e., our approach requires a synchronous update between two

replicas only, adding a minimal overhead to the lazy replication protocol). Moreover, we

show that our method of selecting the buddies ensures correct execution and can be easily

extended to balance workload and reduce latency observable by the client.

Second, we consider Web Service transactions that consume anonymous and

attribute based resources. We show that the availability of the popular lazy replica update

propagation method can be achieved while increasing its durability and consistency. Our

system provides a new consistency constraint, Capacity Constraint, which allows the

system to guarantee that resources are not over consumed and allows for higher

www.manaraa.com

iv

distribution of the consumption. Our method provides: 1.) increased availability through

the distribution of an element’s master by using all available clusters, 2.) consistency by

performing the complete transaction on a single set of clusters, and 3.) guaranteed

durability by updating two clusters synchronously with the transaction.

Third, we consider each transaction as a black box. We model the corresponding

metadata, i.e., transaction semantics, as UML specifications. We refer to these WS-

transactions as coarse grained WS-transactions. We propose an approach that guarantees

the availability of the popular lazy replica update propagation method while increasing

the durability and consistency. In this section we extend the Buddy System to handle

coarse-grained WS-transactions, using UML stereotypes that allow scheduling semantics

to be embedded into the design model. This design model is then exported and consumed

by a service dispatcher to provide: 1.) High availability by distributing service requests

across all available clusters, 2.) Consistency by performing the complete transaction on a

single set of clusters, 3.) Durability by updating two clusters synchronously.

Finally, we consider enforcement of integrity constraints in a way that increases

availability while guaranteeing the correctness specified in the constraint. We organize

these integrity constraints into three categories: entity, domain and hierarchical

constraints. Hierarchical constraints offer an opportunity for optimization because of an

expensive aggregation calculation required in the enforcement of the constraint. We

propose an approach that guarantees the constraints enforcement. Our approach also

distributes the write operations among many clusters to increase availability. Our

experimental results show increased performance when compared to the lazy update

www.manaraa.com

v

propagation algorithm.

www.manaraa.com

vi

Table of Contents

Abstract ... iii

List of Tables .. ix

List of Figures .. x

List of Algorithms .. xi

List of Abbreviations .. xii

Chapter 1 Introduction... 1

1.1 RESEARCH OVERVIEW ... 2

1.2 MOTIVATION .. 3

1.3 PROBLEM ... 3

1.4 RESEARCH TASKS .. 4

Chapter 2 Related Work .. 8

2.1 SERVICE COORDINATION, COMPOSITION AND TRANSACTIONS 10

2.2 LONG RUNNING TRANSACTIONS .. 12

Chapter 3 Consistency, Availability & Durability Guarantees with Serialized Item

Consumption ... 17

3.1 PRELIMINARIES .. 17

3.2 BUDDY SYSTEM ... 19

3.3 DISPATCHER DATA STRUCTURES ... 21

3.4 DISPATCHER SERVICE REQUEST ALGORITHM .. 24

3.5 ANTI-DEPENDENCY DETECTION ALGORITHM .. 26

3.6 DISPATCHER VERSION UPDATE ALGORITHM ... 26

www.manaraa.com

vii

3.7 PRIMARY BUDDY SERVICE ALGORITHM .. 27

3.8 ANALYSIS OF THE BUDDY SYSTEM .. 28

3.9 IMPLEMENTATION .. 34

Chapter 4 Consistency, Availability & Durability Guarantees with Anonymous

Resources ... 37

4.1. ANONYMOUS RESOURCE CONSUMPTION .. 37

4.2 ANALYSIS OF THE BUDDY SYSTEM ON RESOURCE CONSUMPTION 41

4.3 CONCLUSION .. 43

Chapter 5 Consistency, Availability & Durability Guarantees with Coarse Grained

Web Services.. 45

5.1 EXAMPLE TRANSACTION .. 45

5.2 UML SEMANTICS ... 48

5.3 BUDDY SYSTEM CHANGES TO HANDLE COARSE GRAINED SERVICES 51

5.4 IMPLEMENTATION .. 54

5.5 CONCLUSION .. 57

Chapter 6 Web Service Constraint Optimization .. 59

6.1 EXAMPLE TRANSACTION .. 60

6.2 INTEGRITY CONSTRAINTS .. 61

6.3 OBJECT CONSTRAINT LANGUAGE .. 62

6.4 HIERARCHICAL CONSTRAINTS ... 64

6.5 AGGREGATE CONSTRAINT MATERIALIZATION ... 65

6.6 ITERATIVE CONSTRAINT MATERIALIZATION .. 66

6.7 TEMPORAL CONSTRAINTS .. 67

6.8 EMPIRICAL RESULTS .. 69

www.manaraa.com

viii

6.9 CONCLUSION .. 70

Conclusion and Future Work .. 72

References .. 74

www.manaraa.com

ix

List of Tables

Table 3.1 Example Cluster List .. 21

Table 3.2 Example Mixed Transaction Table ... 22

Table 3.3 Example Object Version Table ... 22

Table 3.4 Example Cluster Object Table .. 23

Table 3.5 Windows of Vulnerability .. 33

Table 4.1 Example Object Capacity Table ... 41

Table 6.1 Sample Constraint Materialization Data w/Aggregates 66

Table 6.2 Sample Constraint Materialization Data ... 67

file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263431
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263432
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263433
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263434
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263435
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263436
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263437
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263438

www.manaraa.com

x

List of Figures

Figure 1.1 Example Web Service Farm .. 2

Figure 3.1 Buddy System Workflow .. 33

Figure 3.2 Implementation Data ... 35

Figure 4.1 Implementation data with Capacity Constraint ... 42

Figure 5.1 Activity Diagram for Self Service Seat Selection ... 46

Figure 5.2 WSDL for GetSeatState & WriteReserveSeats Web Service 49

Figure 5.3 UML Class Diagram for GetSeatStatus Service ... 50

Figure 5.4 UML Class Diagram for Reserve Seat Service ... 50

Figure 5.5 XMI Snippet .. 51

Figure 5.6 Availability Improvements under Coarse-Grained Scheduling 54

Figure 6.1 UML Class diagram .. 61

Figure 6.2 SQL Constraint .. 62

Figure 6.3 OCL Example .. 62

Figure 6.4 Service Activity Diagram .. 69

Figure 6.5 Empirical Results ... 70

www.manaraa.com

xi

List of Algorithms

Algorithm 3.1 Dispatcher Service Request Algorithm –Writes 25

Algorithm 3.2 Anti-Dependency Algorithm ... 27

Algorithm 3.3 Dispatcher Version Update Algorithm .. 27

Algorithm 3.4 Dispatcher Service Request Algorithm -Read Only 30

Algorithm 3.5 Primary Buddy Service ... 31

Algorithm 4.1 SQL Implementation with One Record per Item 38

Algorithm 4.2 SQL Implementation with One Record per Attribute 39

Algorithm 4.3 Dispatcher Service Request Algorithm w/Capacity Constraint 43

Algorithm 5.1 Coarse Grained Buddy Selection .. 56

file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263454
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263455
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263456
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263457
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263458
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263459
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263460
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263461
file:///C:/Users/olmsteda.COUGARS/Dropbox/PHD/dissertation.docx%23_Toc381263462

www.manaraa.com

xii

List of Abbreviations

1SR ... One Copy Serializability

2PC ... Two Phase Commit

ACID ... Atomic, Consistent, Isolated, Durable

CAP ... Consistent, Available, Partition Tolerant

RDBMS... Relational Database Management System

SI .. Snapshot Isolation

SOA..Service Oriented Architecture

WS... Web Service

www.manaraa.com

1

Chapter 1

Introduction

U

Modern web based transaction systems need to support many concurrent clients

simultaneously consuming a limited quantity of resources. These applications are often

developed using a Service Oriented Architecture (SOA). SOA supports the composition

of multiple Web Services (WSs) to perform complex business processes. One of the

important aspects for SOA applications is to provide a high-level of concurrency. We can

think of as the availability of a service to all requesting clients requesting services. A

common way to increase service availability is through replication. This requires

replication of services and their corresponding resources. Unfortunately consistency and

durability are often sacrificed to achieve this availability. The CAP theory [1, 2], (which

states that distributed database designers can achieve at most two of the following

properties: consistency (C), availability (A), and partition tolerance (P)) has influenced

distributed database design in a way that often causes the designer to give up on

immediate consistency.

The standard architecture used to increase the availability of a system is through a

Web Service (WS) farm. The WS farm may host multiple replicas of the services and

their resources. Service requests are distributed among the replicas within a WS farm to

www.manaraa.com

2

ensure high availability. Usually, a WS farm is placed behind a dispatcher. Clients send

service requests to the dispatcher, and the dispatcher distributes the requests to one of the

redundant services. In a simple architecture, the redundant web servers will share a single

database, so all replicas will have access to the same data. Figure 1.1 illustrates a simple

WS farm. It is often required to replicate the database to support high availability and

geographic distribution for low latency response time. This architectural solution solves

the problem of increasing availability by increasing the capacity of servers but decreases

data consistency. WS farms often use lazy replicated update propagation methods.

An example of a transaction time correctness guarantee that is lost in this high

availability architecture is referential integrity. In a simple web shopping cart you may

have an orders table with a foreign key to a customer table. Referential integrity would

Figure 1.1 Example Web Service Farm

www.manaraa.com

2

guarantee that an order cannot be committed unless the customer existed. With lazy

replication the customer table may have one cluster as the master, and the order table may

have a separate table as the master. This does not allow the database to ensure that the

integrity existed at transaction time and would force the integrity to be resolved post

transaction time.

Our research addresses the issues related to increasing availability while still

guaranteeing durability and consistency of replicated databases in the context of SOA.

We will provide algorithms and architectures that guarantee one-copy serializability and

ensure that data is distributed in a way that provides enforcement of referential integrity,

redundancy for higher durability, and high levels of availability.

1.1 Research Overview

The continuous connectivity introduced by the internet has created a demand for

applications that can serve a large numbers of users. Many developers have given up on

traditional relational database systems, with their associated guarantees of consistency

and durability, to increase the availability of their systems. In this context availability is

a measure of the number of concurrent users that can be serviced by a system without

system downtime or users experiencing error messages. The goal of our research is to

develop new algorithms and architectures that will increase the availability of distributed

systems while maintaining the consistency and durability that users were guaranteed by

traditional database management systems.

www.manaraa.com

3

1.2 Motivation

Industry has moved away from requiring all transactions to the ACID (Atomicity,

consistency, integrity, durability) properties. This relaxed requirement is motivated by

the need to increase data availability. Unfortunately users experience incorrect data

which causes confusion. An example of this problem is a web based banking interface

that uses a replicated copy of a user’s account activity. If the user provided a payment

over the phone the transaction may have been executed on one system but not replicated

to all systems at any point in time. The users will not see this payment in an online

system and will be confused as to the real state of their bank account.

This kind of confusion may be tolerable in some industries but not in others such

as health care or security. When a decision, based on incorrect data, could cost someone

their life, the correctness of the data becomes more important.

1.3 Problem

The problem is to develop algorithms and architectures for distributed systems

that increase availability over strict replication while preserving ACID guarantees.

The challenge for resource consumption in distributed systems is that once a

resource in a transaction is used, it is not ever available to further transactions. Resources

can be grouped into three categories:

 Serialized items – In this category each individual item has a unique identifier.

An example of this type of item would be an assigned seating location for a

performance. A user has a ticket for seat A 101 on the main floor.

www.manaraa.com

4

 Anonymous items – In this category all items are interchangeable. An example of

this type of item would be a general admission ticket where the ticket gets you

into the event and you can pick any seat. The organization selling this resource

knows the capacity they cannot exceed but the individual items are not

distinguished.

 Attribute based items – Attribute based items have similarities to both serialized

and anonymous resources. An attribute based item has blocks of capacity with an

set of attributes that identify the block. An example of this type of item would be

a general admission ticket to the floor for a concert. The ticket allows you into a

specific section but within the section it is up to you to pick your seat.

1.4 Research Tasks

Four research tasks are addressed as follows:

Availability Increase in Serialized Resource Consumption

In this task we investigate the problem of providing durability for Web Service

transactions in the presence of system failures. We show that the popular lazy replica

update propagation method is vulnerable to loss of transactional updates in the presence

of hardware failures. We propose an extension to the lazy update propagation approach to

reduce the risk of data loss. Our approach is based on the “buddy” system, requiring that

updates are preserved synchronously in two replicas, called buddies. The rest of the

replicas are updated using lazy update propagation protocols. Our method provides a

balance between durability (i.e., effects of the transaction are preserved even if the server,

executing the transaction, crashes before the update can be propagated to the other

www.manaraa.com

5

replicas) and efficiency (i.e., our approach requires a synchronous update between two

replicas only, adding a minimal overhead to the lazy replication protocol). Moreover, we

show that our method of selecting the buddies ensures correct execution and can be easily

extended to balance workload and reduce latency observable by the client. The results of

this work were published in the proceedings of 2012 IEEE International Conference on

Information Reuse and Integration [3] and the Journal of Internet Technology and

Secured Transactions [4].

Availability Increase in Anonymous Resource Consumption

In this task we investigate the problem of providing consistency, availability and

durability for Web Service transactions that consume anonymous and attribute based

resources. We show that the availability of the popular lazy replica update propagation

method can be achieved while increasing its durability and consistency. Our approach is

based on an extension to the Buddy System, requiring that updates are preserved

synchronously in two replicas, called buddies. Our system provides a new consistency

constraint, Capacity Constraint, which allows the system to guarantee that resources are

not over consumed and also allows for higher distribution of the consumption. Our

method provides 1.) Higher availability through the distribution of a element’s master by

using all available clusters, 2.) Consistency by performing the complete transaction on a

single set of clusters 3.) A guaranteed durability by updating two clusters synchronously

with the transaction. The results of this work were published in the proceedings of 2012

IEEE Internet Technology and Secured Transactions [5] and the Journal of Internet

Technology and Secured Transactions [4].

www.manaraa.com

6

Availability Increase in Course Grained Web Service Scheduling

In this task we investigate the problem of providing consistency, availability and

durability for Web Service-transactions. We consider each transaction as a black box,

with only the corresponding metadata, expressed as UML specifications, as transaction

semantics. We refer to these WS-transactions as coarse-grained WS-transactions. We

propose an approach that guarantees the availability of the popular lazy replica update

propagation method while increasing durability and consistency. In our previous work,

we proposed a replica update propagation method, called Buddy System, which required

that updates are preserved synchronously in two replicas. In this section we extend the

Buddy System to handle course grained WS-transactions, using UML stereotypes that

allow scheduling semantics to be embedded into the design model. This design model is

then exported and consumed by a service dispatcher to provide: 1.) High availability by

distributing service requests across all available clusters. 2.) Consistency by performing

the complete transaction on a single set of clusters. 3.) Durability by updating two

clusters synchronously. The results of this work were published in the proceedings of

2013 IEEE Web Services [6] and the Journal of Internet Technology and Secured

Transactions [4].

Constraint Guarantees in Web Service Transactions

In this task we tackle the problem of designing and enforcing consistency

guarantees in a distributed web service system. We use object constraint language to

specify domain, entity, hierarchical and temporal constraints. We guarantee both client

and server constraint using the semantics gained in the previous tasks to auto-generate

www.manaraa.com

7

compensators to undo transactions if client constraints do not hold after completion of a

service request. The results of this work were published in the proceedings of 2013 IEEE

Internet Technology and Secured Transactions [7]

The organization of the dissertation is as follows. In chapter 2 we present related

research. In chapter 3 we present our research findings on availability increase in

serialized resource consumption. In chapter 4 we present our research findings on

availability increases in anonymous resource consumption. In chapter 5 we present our

research findings on availability increase in course grained web service scheduling, and

in chapter 6 we present our research results on constraint guarantees in web service

transactions.

www.manaraa.com

8

Chapter 2

Related Work

Most of the distributed database research ignores resource consumption issues and

assumes traditional locking mechanisms. Julian Jang et al [8] investigate ways to provide

non-locking resource consumption for a longer duration than the transaction to avoid

holding locks. Unfortunately this approach sacrifices serializable guarantees of ACID

(Atomicity, consistency, integrity, durability) that are provided by traditional relational

database management system (RDMS). One of the current application areas for replicated

databases is Web Services applications. Lou and Yang [9] study the two primary replica

update protocols in the context of web services. The authors state that eager replication

has a problem of increasing latency as the number of replicas increases. This increasing

latency diminishes the availability gains from introducing replicas. Most commercial

implementations use lazy-replication because of its efficiency and scalability. Lazy

replication methods are also more partition tolerant than eager replication methods.

However, lazy-replication protocols require additional considerations to ensure

consistency. Research has been conducted for decades on strict and lazy replication in

RDMS. Recent research can be grouped into one of three goals: 1.) trying to increase

availability with strict replication, 2.) trying to increase consistency with lazy replication,

and 3.) attempting to use a hybrid approach.

www.manaraa.com

9

Increasing Availability with Strict Replication

Several methods have been developed to ensure mutual consistency in replicated

databases. The aim of these methods is to eventually provide one-copy serializability

(1SR). Transactions on traditional replicated databases are based on reading any copy and

writing (updating) all copies of data items. Based on the time of the update propagation,

two main approaches have been proposed. Approaches that update all replicas before the

transaction can commit are called eager update propagation protocols; approaches that

allow the propagation of the update after the transaction is committed are called lazy

update propagation. While eager update propagation guarantees mutual consistency

among the replicas, this approach is not scalable. Lazy update propagation is efficient but

it may result in violation of mutual consistency. During the last decade, several methods

have been proposed to ensure mutual consistency in the presence of lazy update

propagation (see [10]for an overview.) More recently, Snapshot Isolation (SI) [11, 12]

has been proposed to provide concurrency control in replicated databases. The aim of this

approach is to provide global one-copy serializability using SI at each replica. The

advantage is that SI provides scalability and is supported by most database management

systems.

Increasing Consistency in Lazy Replication

Breitbart and Korth [13], and Daudjee et al. [14] propose frameworks for master-

slave lazy-replication updates with consistency guarantee. These approaches are based on

requiring all writes to be performed on the master replica. Updates are propagated to the

other sites after the updating transaction is committed. Their framework provides a

distributed serializable schedule where the ordering of updates is not guaranteed.

www.manaraa.com

10

The approach proposed by Daudjee et al. provides multi-version serializability

where different versions of data can be returned for read requests during the period that

replication has not completed.

Hybrid Approach

Jajodia and Mutchler [15] and Long et al. [16] define forms of hybrid replication

that reduce the requirement that all replicas participate in eager update propagation. The

proposed methods aim to increase availability in the presence of network isolations or

hardware failures. Both approaches have limited scalability because they require a

majority of replicas to participate in eager update propagation. Most recently, Garcia-

Munos et al. [17] proposed a hybrid replication protocol that can be configured to behave

as eager or lazy update propagation protocol. The authors provide empirical data and

show that their protocol provides scalability and reduces communication cost over other

hybrid update protocols. In addition to academic research, several database management

systems have been developed that support some form of replicated data management. For

example, Lakshman and Malik [18] describe a hybrid system, called Cassandra, which

was built by Facebook to handle their inbox search. Cassandra allows a configuration

parameter that controls the number of nodes that must be updated synchronously. The

Cassandra system can be configured so nodes chosen for synchronous inclusion cross

data center boundaries to increase durability and availability.

2.1 Service Coordination, Composition and Transactions

Web service transaction management research shares many aspects with web

service coordination and composition. Over the lifespan of a transaction, the web

www.manaraa.com

11

services called will have specific sequencing requirements. Several standards have been

created as the result of years of research in this area.

WS-Business Activity

WS-Business Activity [19] is an OASIS standard created for defining the

coordination of long running transactions implemented with many web services. The

goal of a WS-Business Activity transaction is to ensure that all participants agree on the

outcome of a transaction. A WS-Business Activity Transaction can involve many

different service providers in a single transaction. WS-Business Activity uses other

OASIS standards in the WS* stack including WS-Coordination and WS-Policy to define

the transactional behavior. WS-Coordination is used to coordinate the participants in the

transaction. WS-Policy is used to define the behavior of the transaction.

Web Service Business Process Execution Language

WS-BPEL is a standard developed by OASIS [20] for designing the workflow

between web services inside one realm of authority. Web Services are combined into a

workflow expressed in WS-BPEL and the result is a web service that can be called by

other clients to execute the workflow.

WS-BPEL Scope

To support Long Running Transactions (LRT) WS-BPEL implements Scopes. A

WS-BPEL scope is a combination of a database transaction and a traditional scope in an

imperative programming language. A compensation handler is available in the scope to

www.manaraa.com

12

undue the results of the activities if not all the activities in the scope are successful. WS-

BPEL also supports Isolated Scopes which hold locks on resources like an atomic

transaction to ensure serialize-ability. A WS-BPEL scope does not support coordination

of scopes beyond one BPEL engine.

WS-BPEL Compensation vs, WS-BusinessActivity Compensation

Both WS-BPEL and WS-BusinessActivity support Long Running Transactions

(LRT) through compensation, but the management of the compensation is quite different

in the two specifications. In WS-BPEL compensation is implemented and controlled at

the workflow engine. In WS-BusinessActivity the compensation is implemented and

controlled at the service provider. This allows each participating provider in a WS-

BusinessActivity transaction to decide how it compensates separately. This separate

decision making leads to the reduction of the atomic transaction property described

above. Sauter and Melzer [21] study the combination of WS-BusinessActivity to

manage separate WS-BPEL engines.

2.2 Long Running Transactions

Traditional ACID transactions use locks to guarantee the ACID properties. These

transactions tend to take milliseconds to complete so the negative side of effects of the

locks is often ignored in favor of the guaranteed benefits. Long running transactions run

over longer periods of time and may involve human interaction in the middle of the

transaction. This elongated time period makes the traditional method of using locks

much less desire-able. At the highest level of isolation in a database transaction,

serialize-able, all records in the range of reads are locked for the duration of the

www.manaraa.com

13

transaction. For a long running transaction this can essentially shutdown a service

provider.

Sagas

In Garcia-Molina and Salem [22] defined sagas as a solution to maintain some of

the atomic properties over long running transactions. With Sagas, many small atomic

transactions are wrapped by a larger longer running transaction. Each small atomic

transaction is paired with a compensation handler that is capable of reversing the activity

done in the atomic transaction. If the long running transaction needs to cancel before

completion then it can call the compensators in reverse order for all completed atomic

transactions. Unfortunately with most implementations of Sagas the compensators need

to be hand coded to create a reverse operation of the atomic transaction. This hand

coding leads to many opportunities for errors over the life time of a product.

Relaxation of Isolation

American National Standards Institute (ANSI) SQL compliant database systems

support 4 levels of isolation; Serialize-able, Repeatable Read, Read Committed, Read

Uncommitted. The database programmer is able to set the isolation level before a

database transaction to achieve a higher level of availability in exchange for less

isolation. Correctness is traditionally measured from the perspective how a transaction

would behave if it was run in complete isolation from the other concurrent

transactions. The highest isolation level, Serialize-able, will use many database locks so

that each concurrent transaction is in complete isolation of other concurrent

www.manaraa.com

14

transactions. The next level, Repeatable Read, relaxes the level of isolation down so that

two executions of the same query may return different result sets but protects the

serialization so that any records read in one concurrent transaction cannot be modified by

another concurrent transaction. The third level, Read Committed, relaxes the level of

isolation down further by allowing one concurrent transaction to modify rows previously

read by another concurrent transaction. The lowest level of isolation in database

transactions is achieved by setting the isolation level to Read Uncommitted. In Read

Uncommitted, changes made to records in one concurrent transaction are immediately

visible to other concurrent transactions.

Long running web transactions inherently operate at the same isolation level as the ANSI

SQL Read Uncommitted level. As soon as one long running transaction updates a

resource, the change will be visible to other long running transactions. The traditional

way with long running web service transactions to not relax the isolation to this level is to

hold locks on used resources for the duration of the long running transaction. A

versioning manager could be used as an alternative, to serve different versions to

different concurrent long running transactions. Versioning has been implemented in

database systems to increase availability over the Serialize-able isolation level but to not

relax the isolation. The versioning implemented in commercial database systems does

relax the isolation a little without the knowledge or consent of the database

designer. Fekete et al. [23, 24, 25] have contributed algorithms that allow transactions to

still provide guarantees in spite of the isolation relaxation.

www.manaraa.com

15

Transaction Compensation

To ensure a database transaction maintains it atomic property the database

management software has the ability to undue all the activities done by one concurrent

transaction to enforce the all or nothing principle of a transaction. This undoing is

referred to as a rollback of the transaction in database software. Long running

transactions many not have the ability to undue or many not want to undue the parts of a

transaction that were completed at the point that a transaction decides to abort. With the

relaxation of the isolation property discussed earlier, other actions may have possibly

been taken based on the partial completion of the transaction. Web service transactions

implement a concept of compensation where each service provider is able to decide if and

how they want to handle the abortion of a transaction they are a participant in. Some

service providers may try to completely undue the activities of the transaction similar to a

rollback and others may choose to ignore the abort. Schafer et al. [26, 27, 28] have

researched ways to use compensation to provide a level of guarantee of correctness for

transactions.

Relaxation of Atomic

With transaction compensation a service provider may decide to not undue an

activity that was part of an aborted transaction. It may also not be possible to completely

undue a transaction because of activities that may have happened based on the exposed

information from the partial transaction. This leads to a relaxation of the atomic principle

of database transactions since part of a transaction may be left in place depending on the

decisions made by a service provider in the compensation handler.

www.manaraa.com

16

Open Nested Transactions

In some database management systems, transactions can be nested inside other

transactions. This is done by issuing a begin transaction statement while already inside

another transaction. The database management system will isolate other concurrent

transaction from the results of the inner transactions until the outer transaction

completes. If the outer transaction cannot complete, the inner transactions will be rolled

back along with the outer transaction. With web service transactions this level of

isolation is relaxed. Both WS-BusinessActivities and WS-BPEL LRT can have atomic

transactions running inside the long running transactions. The compensation handler is

responsible for undoing the results of the inner transactions when they

compensate. Garcia-Molina and Salem [22] they define a transaction as a saga if it can

be rearranged into an open nested transaction.

www.manaraa.com

17

Chapter 3

Consistency, Availability & Durability Guarantees with

Serialized Item Consumption

Our proposed system addresses three problems: decrease the risk of losing

committed transactional data in case of a site failure, increase consistency of trans-

actions, and increase availability of read requests. The three main components of our

proposed system are: 1) Synchronous Transactional Buddy System, 2) Version Master-

Slave Lazy Replication, and 3) Serializable Snapshot Isolation Schedule.

To support the above components, the dispatcher will operate at the OSI TCP/IP

level 7. This will allow the dispatcher to use application specific data for transaction

distribution and buddy selection. The dispatcher receives the requests from clients and

distributes them to the WS clusters. Each WS cluster contains a load balancer, a single

database, and replicated services. The load balancer receives the service requests from the

dispatcher and distributes them among the service replicas. Within a WS cluster, each

service shares the same database. Database updates among the clusters are propagated

using lazy replication propagation.

3.1 Preliminaries

 A Web Service Farm is composed of a single dispatcher, D, and a set of Web

www.manaraa.com

18

Service Clusters WSF = (D,{WSC1, . . . ,WSCn}). The dispatcher receives

requests from clients and distributes these requests to the WS-Clusters.

 A WS-Cluster is a group of WS-Replicas that share a single data store and a load

balancer. Each WS- Cluster (WSC) is represented as a three tuple WSC = (WS,

HW, DB), where WS is a web service, HW = {hw1, . . . , hwn} is a set of

common, off-the-shelf (COTS) hardware devices running identical copies of WS.

DB is a database. In this work, we consider relational databases. The load

balancer distributes load to the service replicas in the cluster.

 WS-Replica Buddies are wsi and wsj, such that wsi and wsj are replicas and they

belong to two different WS clusters.

 A Database Transaction is a partial order of read and write operations on data

items, and a single abort or commit. We denote a transaction T as follows, T =

{≤, r[d], w[d] | d ∈ DB, c/a }. The read-set of a transaction T denotes all the data

items d ∈ DB such that there is a r[d] ∈ T. The write-set of a transaction T

denotes the data items d ∈ DB such that there is a w[d] ∈ T.

 Data item version denotes a data value and its version number. Given a database

DB = {d1, . . . ,dn} each data item di (i = 1,..,n) is associated with a single version

number vn. Initially each data item’s version number is 0. Version numbers are

incremented by one when a data item is updated by a transaction. For clarity we

model the database as pairs of data item and version numbers, that is DB = {(d1,

v1), . . . ,(dn, vn)}. In this dissertation we use the term Object and Data item

interchangeably.

 Each database is associated with a version number. Given a database DB and the

www.manaraa.com

19

data items {((d1, v1), …, (dn, vn)} in DB, we say the version numbers of DB is the

vector V=<v1,…, vn>.

 DB-Replicas, denoted as DBR = {dbr1, . . . ,dbrn}, are databases originating from

the same database (i.e., version <01, …, 0n>). Given two replicas, dbr1 and dbrj,

they will have the same data items but may or may not have the same version

number.

Note, for any two database replicas dbri and dbrj if vi = vj then the two

replicas must have the same values for each data item.

3.2 Buddy System

As we have shown in the introduction, lazy update propagation is vulnerable for

loss of updates in the presence of a database server failure. This is a particularly serious

problem in the context of WS farms, where efficiency and availability are often

prioritized over consistency. The window of vulnerability for this loss is after the

transaction has committed but before the replica updates are initiated. To guarantee data

persistence even in the presence of hardware failures we propose to form strict replication

between pairs of replica clusters “buddies.” Our aim is to ensure that at least one of the

replicas in addition to the primary replica is up-dated and, therefore, preserves the

updates.

www.manaraa.com

20

Figure 1.1 shows a WS farm architecture where each cluster has a load balancer.

After receiving a transaction, the dispatcher picks the two clusters to form the buddy-

system. The selection is based on versioning history. The primary buddy will receive the

transaction along with its buddy’s IP address. The primary buddy will become the

coordinator in a simplified commit protocol between the two buddies. Both buddies

perform the transaction and will commit or abort together. Figure shows the workflow of

the transaction processing by the buddies. The dispatcher maintains metadata about the

fresh-ness of data items in the different clusters. The dispatcher will increment a version

counter for each data item after is has been modified. Any two service providers

(clusters) with the latest version of the re-quested data items can be selected as a buddy.

Note, that the database maintained by the two clusters must agree on the requested data

items but may be different for the other data items.

Figure 3.1 Flowchart of Communication between Primary and Secondary

buddies

www.manaraa.com

21

3.3 Dispatcher Data Structures

The dispatcher will maintain a version table for every object modified by web

services. Each service re-quest may include modification and read requests for several

objects. When a service request is received, the dispatcher ensures that the request is

delivered to the appropriate cluster.

If the request is read-only, the primary buddy must have the latest version of all

com-mitted objects in the request. If the request includes writes, the dispatcher needs to

determine if there is any uncommitted transaction accessing the requested data items. If it

finds such active transactions then the request is sent to the web service cluster where the

active transaction is being executed. If the dispatcher cannot find a cluster with the latest

version due to the distribution of the requested object, then the request is queued until the

currently active transactions complete or the updates are propagated.

The dispatcher must also ensure snapshot isolation anomalies can be avoided. For

this we address blind writes and analyze the read log to determine if an anomaly could

take place. Operationally blind writes are writes that follow an earlier read operation

Table 3.1 Example Cluster List

Cluster IP

1 192.168.3.1

2 192.168.3.2

3 192.168.3.4

www.manaraa.com

22

where the write updates a value that was read earlier.

Fekete et al. [4] documented anomalies that can be avoided to turn a snap shot

isolation schedule into a serialized schedule. We incorporate these results to support

serializability. The dispatcher will maintain the following data structures for processing

the algorithms:

 Cluster List - contains the names of the clusters and their IP addresses.

 Objects Version Table - contains the name of the data items and their version

numbers, corresponding to the completed and in-progress transactions.

 Mixed Transaction Table – contains all open request with mixed (both read and

write) operations

Table 3.3 Example Object Version Table

Object Completed In-Progress

A 1012 1014

B 954 954

C 2054 2054

Table 3.2 Example Mixed Transaction Table

Clusters Read Write

1,2 A,B C

1,2 C A

3,4 D E

www.manaraa.com

23

 Cluster Object Table - contains the cluster names, stored objects, and the version

number of the objects at that cluster.

For example, the example data structure tables (Table 3.1, Table 3.3, and Table

3.3) show that clusters 1 and 2 have two update operations on object A sent to them that

are still in-progress.

Table 3.4 Example Cluster Object Table

Cluster Object Version

1 A 1014

2 A 1014

3 A 1012

1 B 954

2 B 954

3 B 954

1 C 2054

2 C 2054

3 C 2054

www.manaraa.com

24

3.4 Dispatcher Service Request Algorithm

The dispatcher service request algorithm (Algorithm 3.1) is executed by the

dispatcher for every incoming request containing write operations. The goal of the

service request algorithm is to find a pair of buddies that have the correct version for the

incoming request. If a pair cannot be found then the request is added to a queue for later

processing. The algorithm has a special check for anti-dependency that will ensure that

either the request is passed to the clusters updating the current records or waits for the

dependent transaction to complete. For read only requests the dispatcher will execute the

read only version of the algorithm (Algorithm 3.4). This version only requires a single

cluster to respond to the request. The cluster must have completed versions for each

object in the request

www.manaraa.com

25

Algorithm 3.1 Dispatcher Service Request Algorithm –Writes

INPUT: requestedObjects = {O1,…, Ok}, where each Oi is a pair (O.id, O.action); Oi.id is the object identifier,

Oi.action is the requested action.

OUTPUT: buddyList is a pair (B1,B2) of clusters to participate in the transaction.

TABLES USED: CL = cluster list table, OV =object version table, CO = cluster object table

buddyList = {}
available = all custer ids in CL
foreach O.id, O.action in requestObjects
 /* find latest version of an object */
 if NOT O.id in OV
 insert o.id into OV
 OV.complete=1,OV.inprogress=1
 set v.complete = OV.complete, v.inprogress = OV.inprogress \
 where ov.object = o.id
 /* eliminate unqualified clusters from potential buddies */
 foreach co.cluster, CO.object, CO.version in CO
 If co.version > V.complete && O.action==READ
 available.remove(co.cluster)
 elseif co.version < OV.inprogress && O.action==WRITE
 available.remove(co.cluster)
 elseif O.action==WRITE && antidependency(requestobjects,co.cluster)
 available.remove(co.cluster)
/* pick a pair of clusters */
foreach cl.cluster in CL
 if available(cl.cluster) and buddyList.count() < 2
 buddyList.add(cl.cluster)
if buddyList.count() > 1
 let b1,b2 denote two clusters in buddylist
 * update version information for write object
 foreach O.id, O.action in requestObjects
 if O.action==WRITE
 increment OV.inprogress for ov.object = o.id
 increment cO.version for cluster = b1 & co.object = o.id
 increment cO.version for cluster = b2 & co.object = o.id
 send buddyList,requestObjects to b1
else
 enqueue(requestObjects)

www.manaraa.com

26

Load Balancing

Algorithm 3.1and Algorithm 3.4 choose the first available cluster for read only

requests, and the first available pair of clusters for requests containing write operations.

The selection can be improved by decorating the Cluster List table (Table 3.1) with

properties to represent sys-tem properties (e.g., processing power, available applications,

process wait-time, etc.) and network-related information (e.g., link properties, hop-

distances, etc.) that can influence buddy selection. For example, bud-dies may be selected

based on their geographical location and the reliability of the communication network.

Our current work extends Algorithm 3.1with the capability of incorporating these

semantics.

3.5 Anti-dependency Detection Algorithm

The Anti-dependency detection algorithm (Algorithm 3.2) is executed by the

dispatcher service request algorithm (Algorithm 3.1) to determine if a cluster should be

eliminated from consideration for servicing a request. The algorithm will return a

Boolean true if the request would have an anti-dependency with a pervious request if past

to the current

3.6 Dispatcher Version Update Algorithm

The Dispatcher Version Update Algorithm (Algorithm 3.3) is executed by the

dispatcher when a data item is updated. When a primary buddy or any lazy update cluster

completes a transaction, it will send a version update request to the dispatcher. The

dispatcher will update the latest completed version value for these clusters. After the

version is updated any requests in the queue will be reprocessed in hopes that the

www.manaraa.com

27

dispatcher can now find a pair of buddies with the correct versions.

3.7 Primary Buddy Service Algorithm

This section describes the interaction between the primary and secondary

buddies. The primary buddy service algorithm (Algorithm 3.5) is executed on the

primary buddy for every incoming request from the dispatcher. The goal of the

primary buddy algorithm is to prepare the request on its cluster by locking resources.

If the request includes write operations then the re-quest is sent to the secondary

Algorithm 3.2 Anti-Dependency Algorithm

INPUT: requestedObjects = {O1,…, Ok}, where each Oi is a pair (O.id, O.action);

Oi.id is the object identifier, Oi.action is the requested action. clusterId = is the id of

the cluster being checked for anti-dependency

OUTPUT: boolean. True if there is an anti-dependency

TABLES USED: MT = current mixed transaction table

antidependency = FALSE
foreach mt.read, mt.write in MT where mt.cluster NOT in clusters
 foreach O.id, O.action in requestObjects
 if o.action == WRITE && mt.read.contains(o.id)
 antidependency = TRUE
 elseif o.action == READ && mt.write.contains(o.id)
 antidependency = TRUE
return antidependency

Algorithm 3.3 Dispatcher Version Update Algorithm

INPUT: versionUpdates =(Triple of cluster, object, version

OUTPUT: buddyLis=(Paid of buddies or empty list if no pair available,

For each object, version in versioUpdates
 update completed = version in objectVersions

Process requests from queue

www.manaraa.com

28

buddy. If the secondary buddy can execute the transaction then the primary will finish

the transaction and send a response to the client and a version update to the

dispatcher.

Theorem 1: The Dispatcher Service Request Algorithms (Algorithm 3.1&

Algorithm 3.4) guarantee one-copy serializability.

Proof:

Claim 1: H is one-copy serializable if the following three conditions hold:

1. The conflicting transactions are sent to the same pair of clusters (WSC)

2. Each cluster guarantees serializable transaction history on its local database.

3. Each request (transaction) is an atomic transaction

Proof of Claim 1:

For a transaction to be one-copy serializable, there must not exists a cycle among

the committed transactions in the serialization graph of H [10]. For a cycle to exist the

following must be true:

 An operation of Ti precedes a conflicting operation in Tj and an operation of Tj

precedes a conflicting operation in Ti.

We show, that if the above 3 conditions hold, there cannot be a cycle in the

serialization graph. Condition 1 ensures that the both transactions Ti and Tj are sent to

the same cluster. Condition 2 ensures that the cluster will serialize the conflicting

transactions Ti and Tj. Condition 3 ensures that the entire transaction Ti is in a single

request to the dispatcher, allowing the local database to see the complete transaction at

once. These three conditions ensure that any potential cycle is sent to the same pair of

www.manaraa.com

29

clusters where local scheduling ensures serializability. So if these conditions hold we are

guaranteed one-copy serializability.

To show that Algorithm 3.1 and Algorithm 3.4 guarantees one-copy serializability,

show that it satisfies the 3 conditions above assume, by contradiction, that H is not one-

copy serializable. Then, one of the 3 conditions must not be valid. Conditions 2 and 3 are

guaranteed by the architecture. This leaves condition 1 as the only possible violation.

Concurrent writes on the same data item or anti-dependent reads (transaction reads where

a conflicting transaction has opposite read/write operations) must not be sent to the same

cluster. There are five potential scenarios for this to happen. The five scenarios are:

Read Set/Write Set overlap – The transaction Ti, containing the read set, will be

sent to any cluster containing the latest committed version of the elements in the

transactions, effectively scheduling the transaction Ti before transaction Tj (Ti < H Tj)

Write Set/Read Set overlap – The transaction Tj, containing the read set, will be

sent to any cluster containing the latest committed version of the elements in the

transactions, effectively scheduling the transaction Tj before transaction Ti (Tj < H Ti)

Write Set/Write Set overlap (write dependency) – If the conflicting operation is on

the same data element then both transactions (Ti, Tj) will be sent to the same cluster. The

database management system guarantees serializable execution at that cluster, and,

therefore, one-copy serializability.

Write Set/Write Set overlap (anti-dependency) – In the case where Ti reads an

element written by Tj and Ti writes an element read by Tj then the requests will be sent to

the same cluster or queued for processing after one of the two transactions complete. The

www.manaraa.com

30

database management system guarantees serializable execution at that cluster, and,

therefore, one-copy serializability.

Read Set/Read Set overlaps – If both transactions (Ti, Tj) only contain read

operations then each will be sent to a cluster that has the latest version of the data

elements in the set. There is no conflict. □

3.8 Analysis of the Buddy System

In this section we study a specific aspect of our pro-posed system. First, we

evaluate the performance of our system in high-volume scenarios. Next, we com-pare our

approach with eager and lazy replica update propagation in the presence of hardware

failures.

Algorithm 3.4 Dispatcher Service Request Algorithm -Read Only

INPUT: requestedObjects = {O1,…, Ok}, where each Oi is a pair (O.id, O.action); Oi.id

is the object identifier, Oi.action is the requested action but is always READ.

OUTPUT: buddyList is a single cluster to perform the transaction.

TABLES USED: CL = Table table, OV =object version table, CO = cluster object table

 buddyList = {}
available = all custer ids in CL
foreach O.id in requestObjects
 * find latest version of an object
 if NOT O.id in OV
 insert o.id into OV
 OV.complete=1,OV.inprogress=1
 set v.complete = OV.complete, v.inprogress = OV.inprogress
 * eliminate unqualified clusters from potential buddies
 foreach CO.cluster, CO.version in CO
 If co.version > V.complete
 available.remove(co.cluster)
* pick a buddy
foreach cl.cluster in CL
 if available(cl.cluster)
 buddyList.add(cl.cluster)
if buddyList.count() > 0
 let b1 denote cluster in buddylist
 send requestObjects to b1
else
 enqueue(requestObjects)

www.manaraa.com

31

Performance Analysis in High Volume Scenarios

Some Web Service transactions involve large volumes of data items of the same

type. For example, if a client is purchasing a concert ticket, multiple tickets have the

same characteristics but different row and seat numbers. If we study a high volume

scenario where there are a large number of tickets being purchased, then there are three

types of consumption patterns that are exposed in this scenario:

 Anonymous Item Consumption - In this pattern each ticket is interchangeable, for

example all seats are general admission. The buddy system would not improve

latency over simple master-slave replication since all concurrent resources re-

quests would need to be sent to the same buddy pair.

 Attribute Item Consumption - In this pattern each client’s request has attribute

Algorithm 3.5 Primary Buddy Service

INPUT: requestedObjects =(Request containg objects to be read and written).

OUTPUT: dataset (data requested in read operations), objectVersions

 Initialize writelist to an empty list
For each object, action in requestObjects
 Update the latest completed version
 If action == WRITE
 Add object to writelist
 Lock object
 Log write operation
 Write undo log for write operation
 Else if action == READ
 Add data to dataset

If there are items in writelist
 Send writelist to secondary buddy
 If secondary buddy committed properly
 For each object in requestObjects
 Complete write on object
 Release lock on object
 Else if secondary buddy aborted
 For each object in requestObjects
 Undo write on object
 Release lock on object
Send response to client
Send version update to dispatcher

www.manaraa.com

32

filters, such as main-floor or balcony. The buddy system would improve latency

over simple master-slave replication because each set of attributes could be sent to

a different buddy pair.

 Serialized Item Consumption - In this pattern each client’s consumption request is

for a specific seat. The buddy system would greatly improve latency over simple

master-slave replication because each seat request could be sent to a different

buddy pair.

Analysis of Lost Updates in the Presence of Failures

Lazy Replication Durability: In each proposed lazy replication scenario, there is

one master for a particular data item. After a transaction has committed there is a period

of time where there is a vulnerability that a lost update can occur if hardware hosting the

master replica fails before the lazy update propagation is initiated.

Eager Replication Durability: In eager replication the window of vulnerability of

lost updates is removed be-cause the updating transaction cannot commit until all other

replicas are also updated. Generally, the two phase commit (2PC) protocol is used across

replicas to achieve this goal. However, the update cost of eager up-date propagation is

high, and, therefore, it is not used frequently.

Buddy System Durability: Using the buddy system, we can guarantee durability.

The weakest point of the buddy system is the durability of the dispatcher. If the

dispatcher fails, the data structures may get lost and recovery activities must be

performed.

Figure 3.1 shows the workflow of the hybrid eager and lazy solution we proposed.

This solution has higher durability than the lazy propagation because two replicas will get

www.manaraa.com

33

the original transaction so a hardware error on one replica will not result in the loss of

update.

Table 3.5 presents our analysis of the hardware failures at the different stages of

the transaction execution. The first column represents the failed hardware, the following

Figure 3.1 Buddy System Workflow

Table 3.5 Windows of Vulnerability

www.manaraa.com

34

columns detail the stages: before the trans-action started, during execution, and after the

trans-action committed but before the update is propagated

3.9 Implementation

We tested the performance of our Buddy-system against the lazy and eager replica

update protocols. We also considered two possible communication architectures:

synchronous and asynchronous communication. Using asynchronous communication, the

client sends a request and waits for a response to be sent asynchronously. In synchronous

communication the client waits until the response is received. The major difference in

these two methods is how the enqueue process is handled when the dispatcher cannot

fulfill the request with the current state of the clusters. Figure 3.2 Implementation Data

shows the empirical data from an implementation using synchronous requests from a Java

desktop application. The dispatcher is written in Java EE using a Tomcat servlet

container. The dispatcher uses class attributes to share hash tables, the internal data

structures, across all request threads. Each cluster is also implemented in Java EE using a

Tomcat servlet container. A separate MYSQL database is used by each cluster in

serializable isolation. The cluster uses a JDBC connection pool communicating to its

individual database.

www.manaraa.com

35

A dataset with different sizes was generated with each transaction randomly

selecting two items to read and one item to write. Buddy-100, Buddy-1000 and Buddy-

10000 represent the performance of the Buddy algorithm with a dataset size of 100, 1000,

and 10000 items, respectively. The same transactions were run against a single, master

cluster system with lazy replication and a two clusters system with strict replication.

Figure 3.2 shows that once the dataset size grew to 10,000 items the performance of the

Buddy algorithm matches the performance of lazy replication, while in-creasing

durability.

The severe performance penalty observed with small datasets is the result of the

enqueue process and the overhead of selecting buddies. Our ongoing work aims to

Figure 3.2 Implementation Data

www.manaraa.com

36

improve the buddy selection algorithm and to reduce the number of transactions that

cannot be processed concurrently. Also, in the current implementation the dispatcher

stores the version data structures in memory. Our future implementation will store these

tables in secondary storage to increase redundancy and durability of the dispatchers’ data.

www.manaraa.com

37

Chapter 4

Consistency, Availability & Durability Guarantees with

Anonymous Resources

4.1. Anonymous Resource Consumption

Some Web Service transactions involve large volumes of data items of the same

type. For example, if a client is purchasing a concert ticket, multiple tickets have the

same characteristics but different row and seat numbers. If we study a high volume

scenario where there are a large number of tickets being purchased, we will discover the

three types of consumption patterns Julian Jang et al [8] identified:

 Anonymous Item Consumption - In this pattern each ticket is interchangeable, for

example all seats are general admission. The Buddy System would not improve

latency over simple master-slave replication since all concurrent resources

requests would need to be sent to the same buddy pair.

 Attribute Item Consumption - In this pattern each client’s request has attribute

filters, such as main-floor or balcony. The buddy system would improve latency

over simple master-slave replication because each set of attributes could be sent to

a different buddy pair.

 Serialized Item Consumption - In this pattern each client’s consumption request is

for a specific seat. The Buddy System would greatly improve latency over simple

www.manaraa.com

38

master-slave replication because each seat request could be sent to a different

buddy pair.

Figure 3.2 shows how the original Buddy System was compared against the lazy

and eager replica update protocols. A dataset with different sizes was generated with each

transaction randomly selecting two items to read and one item to write. Buddy-100,

Buddy-1000 and Buddy-10000 represent the performance of the Buddy algorithm with a

dataset size of 100, 1000, and 10000 items, respectively. The same transactions were run

against a single, master cluster system with lazy-replication and a two cluster system with

strict replication. Figure 3.2 shows that once the dataset size grew to 10,000 items, and

enough clusters were made available, the performance of the Buddy algorithm matches,

or exceeds, the performance of lazy-replication. This increase in availability came with

an increased durability and consistency.

Algorithm 4.1 SQL Implementation with One Record per Item

/* Table Creation */
Create table items (
 Id int identity,
 Item varchar(20),
 Status char(1)
)

/* Inventory Population */
Declare @id int
Set @id = 1
While @id <= 10000
Begin
 Insert into items (item, status)
 Values (‘Opening Night’, ‘A’)
 SET @id = @id + 1
End

/* Consumption Code */
Begin transaction
Select top 1 @myid = id from items
 Where status = ‘A’ and item = ‘Opening Night’
/* Item will be held in basket until transaction completes */
Update items set status = ‘S’ where id = @myid
Commit transaction

www.manaraa.com

39

Anonymous Resource Consumption

The severe performance penalty observed with small datasets is the result of the

enqueue process and the overhead of selecting buddies. To reduce this penalty the system

needs to be able to guarantee that resource capacity is enforced in a way that can

distribute simultaneous writes to different systems. Relational database programmers

have had a problem with anonymous resource consumption for similar architectural

issues. The locking mechanism in relational database systems behaves like a binary

semaphore where only one transaction can get access to a record at a time. The resource

consumption problem requires a constraint that can behave like a counting semaphore

where a fixed number of concurrent processes can access a resource at a time. To solve

this problem in relational systems the capacity updates need to be converted from an

update activity with exclusive locks to a write operation. An outside process is required

to ensure that the number of writes does not exceed capacity. This conversion would

sacrifice the RDBMS ACID guarantees and force the developers to implement their own

Algorithm 4.2 SQL Implementation with One Record per Attribute

/* Table Creation */
Create table tickets (
 Id int identity,
 Item varchar(20),
 Int avail
)

/* Inventory Population */
Insert into items (item, avail)
 Values (‘Opening Night’,35000)

/* Consumption Code */
Begin transaction
/* Item will be held in basket until transaction completes */
Update items set avail =avail - 1 where id = @myid
Commit transaction

www.manaraa.com

40

set of guarantees.

Relational DBMS Implementation

The problem of anonymous resource consumption is a problem that has driven

many system designers away from using a RDBMS because of the way resource

contention is handled in traditional database system. The locking mechanism of RDBMS

is designed to ensure serializability by isolating rows between concurrent transactions.

Unfortunately this mechanism does not allow for a standard solution to the anonymous

resource consumption problem. Algorithm and Algorithm show attempts to implement

anonymous resource consumption in a Microsoft SQL database. Algorithm 4.1 attempts

to model the resource in one record per item/attribute combination. Unfortunately only

one concurrent transaction would gain access to the record. The other transactions are

forced to wait on the lock until completion. Algorithm 4.2 attempts to model the problem

by prepopulating a table with one row per record but unfortunately the locking

mechanism again will block concurrent readers.

Capacity Constraints

To solve the outstanding issue of traditional relational databases and our Buddy

System we introduce a new constraint. Allowing the dispatcher to keep a capacity value

for each resource allows the algorithm to treat updates to an item as separate writes. The

original dispatcher Algorithm 3.1distinguished between writes and updates by the data

item version in the versions table. If an in-progress version was found it was considered

an update otherwise it was considered a write. Our new dispatcher algorithm (Algorithm ,

checks capacity, and if there is available capacity converts the update to a write by using

an initialization version number instead of the actual version.

www.manaraa.com

41

Dispatcher Data Structures

The dispatcher will maintain the three original data structures (Table 3.1, Table

3.3, and Table 3.) from the Buddy System for processing the algorithms along with a new

structure (Table 3.):

1. Cluster List - contains the names of the clusters and their IP addresses.

2. Objects Version Table -contains the name of the data items and their version

numbers, corresponding to the completed and in-progress transactions.

3. Cluster Object Table - contains the cluster names, stored objects, and the version

number of the objects at that cluster.

4. Object Capacity Table - containing the name of the data items and their capacities

4.2 Analysis of the Buddy System on Resource Consumption

Figure 4.1 shows how the new Buddy System algorithm compared against the

lazy and eager replica update protocols. The new algorithm is able to easily outperform

lazy-replication on all types of resource consumption using the new capacity constraints.

Table 4.1 Example Object Capacity Table

Object Capacity

B 2500

C 4500

www.manaraa.com

42

Using the Buddy System on our earlier example transaction would improve the

availability of the TRS by allowing more clusters to participate in the transaction through

the use of different masters for each seating location. The TRS would also have a

guarantee of consistency and durability.

Figure 4.1 Implementation data with Capacity Constraint

www.manaraa.com

43

4.3 Conclusion

In this section we propose an extension to the buddy system to handle anonymous

and attribute based resources. Our solution is based on a new constraint (Capacity

Algorithm 4.3 Dispatcher Service Request Algorithm w/Capacity Constraint

INPUT: requestedObjects = {O1,…, Ok}, where each Oi is a pair (O.id, O.action);

Oi.id is the object identifier, Oi.action is the requested action.

OUTPUT: buddyList is a pair (B1,B2) of clusters to participate in the transaction.

TABLES USED: CL = cluster list table, OV =object version table, CO = cluster

object table, OC = object capacity table

buddyList = {}
available = all custer ids in CL
foreach O.id, O.action in requestObjects
 if OC.availavility for O.id > 0
 * find latest version of an object
 if NOT O.id in OV
 insert o.id into OV
 OV.complete=1,OV.inprogress=1
 set v.complete = OV.complete, v.inprogress = OV.inprogress \
 where ov.object = o.id
 * eliminate unqualified clusters from potential buddies
 foreach co.cluster, CO.object, CO.version in CO
 If co.version > V.complete && O.action==READ
 available.remove(co.cluster)
 elseif co.version < OV.inprogress && O.action==WRITE
 available.remove(co.cluster)
 elseif O.action==WRITE &&

antidependency(requestobjects,co.cluster)
 available.remove(co.cluster)
 else
 return no availability error
* pick a pair of clusters
foreach cl.cluster in CL
 if available(cl.cluster) and buddyList.count() < 2
 buddyList.add(cl.cluster)
if buddyList.count() > 1
 let b1,b2 denote two clusters in buddylist
 * update version information for write object
 foreach O.id, O.action in requestObjects
 if O.action==WRITE
 increment OV.inprogress for ov.object = o.id
 increment cO.version for cluster = b1 & co.object = o.id
 increment cO.version for cluster = b2 & co.object = o.id
 decrement OC.availability for O.id
 send buddyList,requestObjects to b1
else
 enqueue(requestObjects)

www.manaraa.com

44

Constraint) that is enforced by the dispatcher. The constraint behaves as a counting

semaphore where a limited capacity of concurrent transactions can gain access to the

resource simultaneously.

This constraint allows distribution of the concurrent activity to multiple clusters

increasing the availability of the system. Each individual transaction is applied to a pair

of clusters synchronously allowing enforcement of consistency guarantees and durability.

The limitation of our work is that the element types need to be identified as

anonymous or attribute based and the system cannot discover this from the semantics of

the transaction. Our ongoing work extends our solution to incorporate semantic analysis

of web service transactions to allow automatic

www.manaraa.com

45

Chapter 5

Consistency, Availability & Durability Guarantees with Coarse

Grained Web Services

In our earlier work, web services were fine grained CRUD services similar to a

database SQL interface. Each request could contain several objects that would be

updated, but the semantics of each object updated were available to the dispatcher in the

request. These semantics are available because there is a limited set of operations and the

detail level is atomic. Coarse grained web services are essentially distributed functions

where the only information the dispatcher has at runtime is the input and output

parameters of the web service. For the dispatcher to schedule the coarse grained web

services properly it needs to map the coarse grained service to a limited set of operations

on the atomic data item level.

5.1 Example Transaction

Consider a Ticket Reservation System (TRS). TRS uses web services to provide

a variety of functionalities to the clients. For example, clients may want to select a

specific seat for a popular concert in the ticket reservation. Figure 5.1 shows an

implementation of this functionality.

Upon receiving a client request, the web application needs to communicate with a

www.manaraa.com

46

set of web services to gather the data required to render the current seating map and allow

the limited resource (the seats) to be consumed. The seating map needs to convey several

pieces of information to the user, including:

 Visual representation of sold and available seats

 Pricing for the current user

 Performance details.

After the user has selected a set of seats they would like to purchase a web service

is called to consume those seats and they will no longer be available for other users to

consume. The following web services are used in Figure 5.1:

 GetSession – This web service will retrieve session state based on a unique

session id.

 LoginAnonymous – This web services will login a user so they retrieve

credentials for pricing and seating location availability. If the session does not

have a logged in credential it will give the user the “anonymous” credentials.

 GetZones – This web service retrieves the zone information for the space where

the event will take place. This information is used to allow a user to navigate

between zone information. This information does not typically change after a

Figure 5.1 Activity Diagram for Self Service Seat Selection

www.manaraa.com

47

ticketed evented has been setup.

 GetSeats – This web service retrieves seating location for the current or default

zone. Seating information is composed of a set of seats that have attributes for

section, row and seat numbers. This information does not typically change after a

performance has been setup.

 GetSeatState – This web service retrieves state information for all the seats in the

zone. This information changes when any seat is consumed by another user.

 GetPerformanceDetails – This web service retrieves program details for the

performance that is being sold. This information does not typically change after a

performance has been setup.

 ReserveSeats – This web service consumes the limited resource and changes the

state of the previous GetSeatState web service.

Unfortunately, it is not clear how many simultaneous requests will come from

clients at a given time. During normal operations an organization may only have a few

concurrent requests. When a popular event goes on sale, this number could rise to tens of

thousands of requests. If several events go on sale at the same time then the services

could need to handle hundreds of thousand, simultaneous requests.

To handle this unknown load at deployment time, implementers have resorted

giving up consistency by manually partitioning the data across different servers. For

example each event could have its own ReserveSeats server so that the load of many

currently events would not impact performance. This solution does not scale well as new

www.manaraa.com

48

hardware would be needed to handle higher levels of event concurrency.

5.2 UML Semantics

Additional semantics for the coarse grained web services can be acquired from

integration of the matching UML Activity and Class diagrams. UML provides an

extensibility mechanism that allows a designer to add new semantics to a model. A

stereotype is one of three types of extensibility mechanisms in the UML that allows a

designer to extend the vocabulary of UML in order to represent new model elements

[29]. Traditionally these semantics were consumed by the programmer manually and

translated into the program code in a hard coded fashion.

Read vs. Write Semantics

Figure 5.1 is an activity diagram with two stereotypes used to model web services

that are read-only and web services that write and update data as part of the process. In

the example the ReserveSeats services modifies data as part of its process and all other

services just read data as part of their process.

Element Unique Identifier Semantics

Each Web Service in the Activity diagram has a matching UML Class diagram

that shows the structure of the input and output messages. This same data can be

retrieved from the WSDL [30] message types, though there is no natural link between the

activity diagram and the WSDL services. So we ignore the WSDL at this time and use

the data from the XMI file. Two of the matching class diagrams are shown in Figure 5.3

and Figure 5.4.

www.manaraa.com

49

An attribute level stereotype <<PK>> is used to represent the unique identifier

combination of the attributes. For example in the GetSeatStatus web service (Figure 5.3),

an individual seats status can be uniquely identified in the response by the attribute set

{Performance, Zone, SeatId}. The ReserveSeatsRequest (Figure 5.4) has an input

Figure 5.2 WSDL for GetSeatState & WriteReserveSeats Web Service

www.manaraa.com

50

message that is a composition of seats with the same unique identified of the attribute set

{Performance, Zone, SeatId}.

Parallel Scheduling Semantics

The UML Activity diagram (Figure) also provides us with the semantics required

to know which services can be called in parallel. The getSession and loginAnonymous

Figure 5.4 UML Class Diagram for Reserve Seat Service

Figure 5.3 UML Class Diagram for GetSeatStatus Service

www.manaraa.com

51

services are required to be called before the remaining services as they change required

state used by the later service. Figure 5.5 shows a fragment of the XMI file used for

extracting the parallel scheduling semantics. The file is organized in XML and the web

services form a directed acyclic graph (DAG). The fork, join and each web service are

represented as ownerMember XML elements with a unique identifier that can be traced to

the graph edges. Each graph edge has a target for every path. Each path leads to the join

node where the dispatcher will wait for all paths to complete. A breadth first search

algorithm that uses parallel traversal is used to follow all the parallel paths in the fork.

5.3 Buddy System Changes to Handle Coarse Grained Services

The original buddy system received a single packet of the fine grained operations

in the transaction. In normal web service operations, a client application is responsible

for calling each operation individually. The Dispatcher Service Request Algorithm

(Algorithm 3.1) needs visibility into all operations of the transaction at a single point in

time. To facilitate this visibility, the client sends all requests as a batch and the

dispatcher sequences the calls based on the semantics from the XMI data.

Figure 5.5 XMI Snippet

www.manaraa.com

52

Buddy Selection Algorithm

Algorithm 5.1 is an updated buddy selection algorithm to select the appropriate

pair of web services to perform the transaction. The algorithm will iterate over the forks

in the activity diagram to service the items that can be done in parallel. A fork is a point

in the activity diagram where the flow is split and can run in parallel. Within each fork

the algorithm will iterate over each web service and flatten the class diagram to get one

instance per aggregation. Each instance is then iterated over and its current version is

checked in the version tables to determine its current version. The algorithm then

determines eligible buddies that can service the batch of web service requests and

randomly chooses two to do so.

Theorem 1: The Buddy Algorithm (Algorithm 3.1) guarantees one-copy

serializability.

Proof Sketch: Our proof is based on the following claim: Let H be a history over

a set of transactions T, such that each transaction Ti ; {i = 1, . . . , n} is made up of a set

of web services WSi. Each web service is made up with a setup of operations that are

either read Ri (A) or write Wi (A) operations on elements from a data set. H is one-copy

serializable if the following three conditions hold:

1. Each request (transaction) is an atomic transaction

2. Concurrent writes on the same data item are sent to the same cluster, and

3. Each cluster guarantees serializable transaction history on their local database.

To show that the claim holds, assume, by contradiction that H is not one-copy

www.manaraa.com

53

serializable. Then, there must exist a cycle among the committed transactions in the

serialization graph of H. Let Ti and Tj be the two transactions responsible for the cycle.

We show that the serialization graph cannot contain a cycle for the three potential

scenarios. The three scenarios are: Read Set/Write Set overlap, Write Set/Write Set

overlap, and Read Set/Read Set overlap.

 Read Set/Write Set overlap – in this scenario one transaction reads items that

overlap with items being updated in another transaction. If Ti is the transaction

reading items and Tj is the transaction writing items then the dispatcher will

always schedule Ti before Tj by serving Ti with the previous version of the data

items. This ensures that this scenario cannot contain a cycle.

 Write Set/Write Set overlap. If Ti is a transaction updating the same items as

transaction Tj then both transactions will be sent to the same cluster. Since the

cluster is guaranteeing serializability then this scenario cannot contain a cycle.

 Read Set/Read overlaps. Since both transaction Ti and transaction Tj are reading

the same data items then they will scheduled in any order using the latest

completed using version of the data items. This ensures that this scenario cannot

contain a cycle.

www.manaraa.com

54

5.4 Implementation

We used Visual Paradigm™ for the UML diagrams and exported the diagrams to

XMI using the built in export functionality. On startup the dispatcher created a

precedence graph based on the semantics of the XMI data. We ran the results against a

concurrent load of users and measured the time till completion. Figure shows the results

where we compare three different modes of operation against the time it takes for blocks

of users to complete the requests. The users were tested in blocks of 50 and tested

against three different architectures, where each web service was called sequentially

using no UML semantic data, in parallel using the semantic data from the UML Activity

diagram, and distributed using the semantic data from both the activity and the class

diagrams.

Figure 5.6 Availability Improvements under Coarse-Grained Scheduling

www.manaraa.com

55

Transaction Details

In the example transaction the web application sends the set of web service

requests {GetSession, LoginAnonymous, GetZones, GetSeats, GetSeatState,

GetPerformanceDetails} to the dispatcher. In sequential mode the services would be

scheduled in a sequence on the same web service box.

Using the semantic data from the UML Activity diagram Figure 5.1 Activity

Diagram for Self Service Seat Selection, the dispatcher will determine that a sequence of

two subsets is required:

1. {GetSession, LoginAnonymous}

2. {GetZones, GetSeats, GetSeatState, GetPerformanceDetails}

Using these semantics, the services in the same subsets can be scheduled in

parallel for an improvement in performance over the original sequential schedule.

Algorithm 5.1 allowed the dispatcher to take this a step further by looping through

fine grained objects read or written by the individual web service. This information is

gained from two places:

1. The action of read or write comes from the stereotype in the UML activity

diagram (Figure 5.1).

2. The individual items from the UML class diagrams represent the fined grained

items.

www.manaraa.com

56

The <<PK>> stereotype in the UML class diagrams allows us to uniquely identify

each tuple in the fined grained operations. One these semantics have been identified the

original buddy algorithm (Algorithm 3.1) can be implemented on the coarse grained

services.

Figure 5.6 shows the performance results of the implementation where the

additional semantics gained from the UML data allows the buddy system to almost

double the availability of the original sequential schedule.

INPUT: activity (XMI from activity diagram & class diagram), clusterObjects, objectVersions

OUTPUT: buddyList (Pair of buddies or empty list if no pairavailable), clusterObjects,

objectVersions

Algorithm 5.1 Coarse Grained Buddy Selection

Add all clusters to available list
foreach fork in activity
 foreach ws in fork
 foreach O in ws //iterate over aggregate
 If O in objectVersions
 Getcompleted OV.c, OV.i from objectVersions
 else
 OV.c=1,OV.i=1
 foreach CO.c, CO.v in clusterObjects
 If CO.v > OV.c && O.a==READ
 available.remove(CO)
 elseif CO.v < OV.i && WS.a==WRITE
 available.remove(CO)
 foreach CO.c in available
 if count(buddyList)<2
 add Co.c to buddyList
 if count(buddyList)>1
 foreach B in buddyList
 foreach ws in fork
 foreach O in ws //iterate over aggregate
 getinprogress OV.i from objectVersions for B
 if WS.action==WRITE
 increment OV.i
 send buddyList,requestObjects to B1
 else
 enqueue(requestObjects)

www.manaraa.com

57

WSDL Parameter Partitioning

If data is constantly being updated by one service and retrieved by another service

then the buddy system will partition the data on a natural level. For example in Figure

the GetSeatState service has two input parameters (event, zone) and in Figure the

WriteReserveSeats service has two input parameters (event, collection of seats). If a

large stadium were selling an extremely popular concert without the buddy system they

may want to partition the load based on the zone of the stadium. Unfortunately, the web

services would need to be consistent in the parameter data to enable a dispatcher to

distribute the requests based on the data.

The buddy system does this partitioning as part of the process of finding a pair of

buddies. If a current transaction is progress that affects a data tuple, for example: zone

availability), then all requests that use this tuple will be sent to the same cluster.

5.5 Conclusion

In this chapter we propose an extension to the buddy system to handle coarse

grained web services. Our solution is based on extending UML with stereotypes to embed

CRUD, Parallel and data element semantics into the model. The dispatcher can then

extract the semantics from the model and distribute the requests to clusters as it did with

the fine grained web service. Each individual transaction is applied to a pair of clusters

synchronously allowing enforcement of consistency guarantees and durability. The

www.manaraa.com

58

limitation of our work is that the dispatcher needs to understand all semantics at startup

time and cannot discover new service semantics as they evolve.

www.manaraa.com

59

Chapter 6

Web Service Constraint Optimization

A limitation of our earlier work on the Buddy System is that integrity constraints that

required different classes in the calculation could not be guaranteed. For example, if an

address required a valid owner in the person class. These integrity constraints could not be

enforced because data mutation could happen on different clusters simultaneously. In this

section we address that limitation. We provide an approach that pulls the UML constraints

expressed in OCL from the design model and incrementally maintains the data that allow

the dispatcher to enforce the constraint, and once successful it is free to distribute requests

to several clusters concurrently.

Our solution provides several advantages not addressed in traditional distributed

database replica update protocols. First, our approach provides the scalability required by

modern n-tier applications, such as web farms, and is suitable for the architectures and

technologies implementing these applications in cloud computing environments. Second,

the buddy-selection algorithm supports dynamic master-slave site selection for data items

and ensures correct transaction execution. Third, we show that our method can be easily

extended to incorporate network specific characteristics, such as distance and bandwidth,

that further reduce the latency observed by the client and to provide load-balancing among

www.manaraa.com

60

the replicas. Our empirical results support our hypothesis that in the presence of large data

sets, the efficiency of our approach is comparable to the efficiency of the lazy update

propagation method while also ensuring the integrity of the data.

6.1 Example Transaction

The Washington, DC transit system uses a smart card (SmarTrip) as a payment

system. The card maintains the value on it resulting from passenger activities (boarding,

disembarking, adding value to card). Each activity is recorded in a centralized activity

log that is linked to the smart card involved in the activity on a central system. Some

activities originate on the card (boarding, disembarking) and others originate in the

central system (adding value). Figure 6.1 shows a sample UML class diagram for this

example. This activity log relies on a sequence number to identify the ordering of

activities. An incorrect sequence number can cause the system to not allow a card to

receive added value despite a transaction occurring on the centralized system.

Corruption of the sequence numbers makes the sequence number data integrity

issue a potential large scale denial of service issue. Imagine thousand passengers unable

to gain access to the public transportation system. Often this type of constraint is not

enforced because of the expense of runtime calculation. A simple example SQL check

constraint that would enforce the constraint is shown in Figure 6.2. Unfortunately most

commercial SQL implementations do not allow sub-queries in the check constraint. So

this constraint becomes impossible to enforce.

www.manaraa.com

61

6.2 Integrity Constraints

Codd [31] defined five types of integrity constraints to guarantee the consistency

in relational databases:

 Entity - Every entity needs a primary key that will uniquely identify each tuple in

the entity.

 Domain - The model can define domains to represent valid values stored in entity

attributes. This is done through the use of data types.

 Column - Each column of the entity can specify a smaller set then the complete

range for the data type. This is normally done through the ENUM feature of the

database management system.

 Foreign Key - The DBMS can enforce that a parent related record exists in the

database or the child relationship cannot be added.

 User defined - A user defined integrity constraint can express any user defined

logic checks. This is normally done through the check constraint syntax of the

DBMS. DBMS languages often allow for the definition of both column level

check constraints and tuple level check constrains. Tuple level check constraints

can enforce integrity using any attributes of the tuple in comparisons including

sub-queries.

Figure 6.1 UML Class diagram

www.manaraa.com

62

These five types of constraints can be grouped into three categories: Entity,

Domain and hierarchical. The Domain and Column constraints are both used to limit the

domain of an attribute. Foreign key constraints are also a form of domain constraint.

They allow a refinement of the domain of a column to limit to existing parent objects.

User defined constraints are primarily used to express constraints on associations

between relations that are more complex. These associates are typically hierarchical and

enforce an aggregate or require an iteration across children records in an association.

6.3 Object Constraint Language

Object Constraint Language (OCL) is part of the official OMG standard for UML.

An OCL constraint formulates restrictions for the semantics of the UML specification.

An OCL constraint is a guarantee that is always true if the data is consistent. A constraint

is expressed on the level of classes, but it is applied on the level of objects. OCL has

Figure 6.2 SQL Constraint

Figure 6.3 OCL Example

www.manaraa.com

63

operations to observe the system state but does not contain any operations to change the

system state.

Kinds of OCL Constraints

 Invariants. An invariant is a condition which always holds. In a relational

database management system RDBMs an invariant maps to an assertion because

the assertion will be enforced by the RDBMS on every action to the system.

 Pre-conditions. A pre-condition is a condition that is guaranteed to hold before an

activity is executed. In RDBMs a check constraint would be used to enforce the

constraint as it would only check on the insertion and updating of data in the

specific table.

 Post-conditions. A post-condition is a condition that is guaranteed to hold after an

activity is executed. In a RDBMS the post condition would need to be

implemented in a Trigger to force the evaluation to after the action.

OCL can navigate an association and provides functions that aggregate over

collections. We considered predicate logic as the specification language of the

constraints. Unfortunately it lacks the ability to express aggregate calculations. We also

considered relational algebra for the specification of the constraints but it lacks the

support is design tools. OCL is integrated into many UML design environments and fits

well in a model driven architecture (MDA). Figure 6.3 shows sample OCL to enforce that

the sequence number on currently inserted activity is greater than all others sequence

numbers for the same smarTrip card.

www.manaraa.com

64

6.4 Hierarchical Constraints

Hierarchical constraints are expressions of data integrity that involve more than

one tuple. The association can be between two classes of data or self-referential over one

class of data. These constraints fall into two categories; aggregates and iterative.

Aggregate constraints involve functional calculations that are calculated over all the

records in the association relationship. Iterative constraints require iteration over the

association to enforce the constraint. Iterative constraints fall into two categories;

existential and universal quantification.

With aggregate constraints the functional aggregate calculation is often expensive

to calculate at insertion time and is therefore ignored due to the expensive operations. In

relational database systems this enforcement is done with a check constraint or a trigger.

The former being less expensive as it is a declarative constraint. Unfortunately check

constraints that can use sub-queries are often not supported in the relational system.

Triggers are a more expensive solution for enforcement of the constraints as they are

procedural and offer less opportunity for optimization. There are several common

aggregate calculations used in constraints:

 Maximum

Maximum aggregation constraints are used to ensure a new tuple has a

value in relation to the current maximum. This relationship is often a greater

than or less than comparison. Our example above with the sequence number is

an example of a maximum aggregate association constraint.

 Minimum

www.manaraa.com

65

Minimum aggregation constraints are used to ensure a new tuple has a

value in relation to the current minimum. This relationship is often a greater

than or less than comparison.

 Sum

Sum aggregation constraints are used to ensure a new tuple’s value does

not surpass an upper bound. An example would a sales line item table that has a

quantity field. You could use the sum of the quantity field to ensure the new

tuple does not surpass and inventory quantity.

 Count

Count aggregation constraints are used to ensure adding a new tuple

does not surpass an upper bound on quantity. An example would the capacity

constraint added to the Buddy System in our previous work [5]. Referential

Integrity [31] is a specific form of a count based aggregate constraint. Normally

the count is one for referential integrity to ensure the parent record exists.

6.5 Aggregate Constraint Materialization

The dispatcher materializes the constraints by keeping a copy in memory of the

aggregate calculation. As new tuples arrive at the dispatcher the materialized aggregation

is updated incrementally. If a transaction does not complete the dispatcher will

decrement count aggregates or subtract sum aggregate to undo the operation. Non-

completing transactions on minimum and maximum aggregates only update the

materialized value if they are still the current value. Table 6.1 shows example data that is

maintained by the dispatcher to materialize a constraint. The value and parent are stored

www.manaraa.com

66

per object along with the quantity which is only used with aggregate operations such as

average where the quantity of records in the hierarchy matter.

All post-condition constraints are converted to pre-condition constraints to allow a

check dispatch time. The serialization and atomic guarantees by the clusters allow this

conversion to take place to increase availability.

6.6 Iterative Constraint Materialization

Universal quantifications are expressed with a comparison against a scalar or an

aggregate. In the case of the scalar comparison the dispatcher can apply the constraint on

all incoming requests that insert or update the object. If the constraint does not hold we

can reject the request. In the case of a universal quantification using a comparison

against an aggregate we use the same materialization infrastructure from above.

Table 6.1 Sample Constraint Materialization Data w/Aggregates

Object
Constraint Parent Value Quantity

smarTrip sequenceOrd
1000120 408 408

www.manaraa.com

67

Existential quantifications need to be verified on delete operations along with

insert and update. There may be several records are available to satisfy the constraint. To

materialize this constraint check the system maintains a tuple for each constraint that

records the number of records that are available to satisfy the constraint. Insert and

update operations will increment the quantity and delete operations will decrement the

quantity. If the quantity is greater than zero then the operation succeeds. An example of

the data maintained by the dispatcher is shown in Table 6.1.

6.7 Temporal Constraints

We have grouped the original Codd [31] constraint types into 3 categories: entity,

domain and hierarchical. Domain constraints can be modeled in the UML with data

types and enumerations. Entity integrity can be modeled with UML stereotypes

representing the primary keys as we have done in our previous work [6]. Web services

require an additional constraint type not handled in relational database systems. This

constraint type models the state before and after the web service. There are two

perspectives to consider around temporal constraints: client and server. Server temporal

constraints guarantee the state of the server is consistent after the service is completed

Table 6.2 Sample Constraint Materialization Data

Object
Constraint Parent Quantity

smarTrip paymentExists
1000120 3

www.manaraa.com

68

based on the actions of the service. Client temporal constraints guarantee the state of the

client after the service is completed. Ziemann and Gogolla [32] have worked to extend

OCL to support syntax to specific additional changes to state over the life of an

application from instantiation to termination. For this work we were able to stick with

the out of the box OCL and use the @pre tags in post-condition constraints to guarantee

that the effects of the web service change the state of the web server correctly. Client

temporal constraints are useful in the example transaction above. The smart card needs

to guarantee that the balance after the use (reduce) transactions is equal to the original

balance minus the sum of all the removes.

To enforce both client and server side temporal constraints the client needs a

mechanism to undo the transaction after the server has returned the service response. A

two phase commit could be implemented from the client to the server to allow the client

to roll back the server transaction in the case where the client constraint does not pass.

Unfortunately this method would double the message count for every transaction and

reduce the improvements in availability we have already achieved.

Using the method from our previous work mapping course grained services to

fine grained services [6] we are able to auto generate compensators. The use of the

compensator allows a single round trip message from the client to the server when the

constraints pass on both client and server. When a client side constraint fails the

compensator is invoked to “undo” the state change that was performed by the service on

the server. Figure 5.1 shows an activity diagram with post conditions on both the server

www.manaraa.com

69

and the client.

6.8 Empirical Results

We modeled a small urban transportation system with 100,000 users averaging 2

trips a day for 50 weeks a year. Each user is assumed to replenish his or her value once a

week. The model was loaded into a Microsoft SQL Server 2008 server. We wrote a

function with a single argument of the card id that returned the maximum sequence for

that card id. SQL Server does not support sub-queries in check constraints but does

support functions. The function was placed inside a constraint to enforce that new tuples

have a sequence greater the current maximum for that card.

Figure 6.4 Service Activity Diagram

www.manaraa.com

70

We tested insert timings of loads of concurrent transactions in blocks of 100 with

the constraint implemented in the SQL Server with lazy replication and with the Buddy

System implementing the constraint with four clusters. Without the Buddy System the

SQL Server implementation performed well as long as there was an index on the card id.

This allowed the system to seek on the index to the subset of records for one customer.

The database system did not use synchronization when performing the check constraint.

This means that current consistency with lazy replication and the SQL implementation

was not guaranteed. With the Buddy System higher availability was achieved by

distributing the inserts to all four clusters while guaranteeing the consistency.

6.9 Conclusion

In this chapter we propose an extension to the buddy system to handle integrity

Figure 6.5 Empirical Results

www.manaraa.com

71

constraint guarantees. Our solution is based on extracting OCL design constraints from

the UML models of the system. The dispatcher can then enforce these constraints using

materialized aggregates. Each constraints aggregate value is updating incrementally as

new tuples are inserted into the database. The dispatcher is then able to distribute the

requests to any cluster after passing the constraint check. The limitation of our work is

that we currently only support a subset of possible OCL notation for expressing the

aggregate constraints.

www.manaraa.com

72

Conclusion and Future Work

In our research we investigate the problem of providing consistency, availability

and durability for Web Service transactions. We show that the popular lazy replica

update propagation method is vulnerable to loss of transactional updates in the presence

of hardware failures. We also show that strict replica update propagation method

reduces availability beyond what is required for providing the necessary transactional

guarantees. Our approach, called the “buddy” system, requires that updates are preserved

synchronously in two replicas. The rest of the replicas are updated using lazy update

propagation protocols. Our method provides a balance between durability (i.e., effects of

the transaction are preserved even if the server, executing the transaction, crashes before

the update can be propagated to the other replicas) and efficiency (i.e., our approach

requires a synchronous update between two replicas only, adding a minimal overhead to

the lazy replication protocol). Moreover, we show that our method of selecting the

buddies ensures correct execution and can be easily extended to balance workload, and

reduce latency observable by the client.

Future research tasks in this area include:

 Application Partition Constraints – integrity constraints involving more than one

application partition.

www.manaraa.com

73

 Service CRUD Security – integrity constraints guaranteeing security in CRUD

operations.

www.manaraa.com

74

References

[1] S. Gilbert and N. Lynch, "Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services," SIGACT News, vol. 33, pp. 51-59, 2002.

[2] D. Abadi, "Consistency tradeoffs in modern distributed database system design: Cap

is only part of the story," Computer, vol. 45, pp. 37-42, 2012.

[3] A. Olmsted and C. Farkas, "The cost of increased transactional cor-rectness and

durability in distributed databases," in 13th International Conference on Information

Reuse and, Los Vegas, NV, 2012.

[4] A. Olmsted and C. Farkas, " Buddy System: Available, Consistent, Durable Web

Service Transactions," Journal of Internet Technology and Secured Transactions,

vol. 3, 2013.

[5] A. Olmsted and C. Farkas, "High Volume Web Service Resource Consumption," in

Internet Technology and Secured Transactions, 2012. ICITST 2012, London, UK,

2012.

[6] A. Olmsted and C. Farkas, "Coarse-Grained Web Service Availability, Consistency

and Durability," in IEEE International Conference on Web Services, San Jose, CA,

2013.

[7] A. Olmsted and C. Farkas, "Web Service Constraint Optimization," in Internet

Technology and Secured Transactions, 2013. ICITST 2013, London, UK, 2013.

www.manaraa.com

75

[8] J. Jang, A. Fekete and P. Greenfield, "Delivering promises for web," in Web

Services, IEEE International Conference on, 2007.

[9] M. Y. Lou and C. S. Yang, "Constructing zero-loss web services," INFOCOM, pp.

1781-1790, 2001.

[10] M. T. Ozsu and P. Valduriez, Principles of Distributed Database Systems, 3rd ed.,

Springer, 2011.

[11] Y. Lin, B. Kemme, M. Patino Martiınez and R. Jimenez-Peris, "Middleware based

data replication providing snapshot isolation," in Proceedings of the 2005 ACM

SIGMOD international conference on Management of data, ser. SIGMOD ’05, New

York, NY, 2005.

[12] H. Jung, H. Han, A. Fekete and U. Rhm, "Serializable snapshot isolation," PVLDB,

pp. 783-794, 2011.

[13] Y. Breitbart and H. F. Korth, "Replication and consistency: being lazy helps

sometimes," Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems, ser. PODS ’97, pp. 173-184, 1997.

[14] K. Daudjee and K. Salem, "Lazy database replication with ordering," in Data

Engineering, International Conference on, 2004.

[15] S. Jajodia and D. Mutchler, "A hybrid replica control algorithm combin-ing static

and dynamic voting," IEEE Transactions on Knowledge and Data Engineering, vol.

1, pp. 459-469, 1989.

[16] D. Long, J. Carroll and K. Stewart, "Estimating the reliability of," IEEE

Transactions on, vol. 38, pp. 1691-1702, 1989.

www.manaraa.com

76

[17] L. Irun-Briz, F. Castro-Company, A. Garcia-Nevia, A. Calero-Monteagudo and F. D.

Munoz-Escoi, "Lazy recovery in a hybrid database replication protocol," in In Proc.

of XII Jornadas de Concur-rencia y Sistemas Distribuidos, 2005.

[18] A. Lakshman and P. Malik, "Cassandra: a decentralized structured," SIGOPS Oper.

Syst. Rev., vol. 44, pp. 35-40, 2010.

[19] "OASIS Standard, Web Services Business Activity (WS-BusinessActivity) 1.2,"

February 2009. [Online]. Available: http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-

spec-os.doc. [Accessed 10 12 2012].

[20] "OASIS Standard, Web Services Business Process Execution Language (WS-

BBPEL) 2.0," April 2007. [Online]. Available: http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. [Accessed 10 12 2012].

[21] P. Sauter and I. Melzer, "A Comparison of WS-BusinessActivity and BPEL4WS

Long-Running Transaction," in KIVS, Kaiserslautern, Germany, 2005.

[22] H. Garcia-Molina and K. Salem, "Sagas," in In Proceedings of the 1987 ACM

SIGMOD international Conference on Management of Data, San Francisco,

California, 1987.

[23] A. Fekete, S. N. Goldrei and J. P. Asenjo, "Quantifying isolation anomalies," in

Proceedings of the VLDB Endowment, 2009.

[24] H. E. Ramadan, I. Roy, M. Herlihy and E. Witchel, "Committing conflicting

transactions n an STM," SIGPLAN, vol. 44, pp. 163-172, 2009.

[25] M. Cahill, U. Roehm and A. Fekete, "Serializable Isolation for Snapshot Databases,"

in SIGMOD, 2008.

www.manaraa.com

77

[26] M. Schafer, P. Dolog and W. Nejdl, "An Environment for Flexible Advanced

Compensations of Web Service Transactions," ACM Transactions on the Web, 2008.

[27] A. Fekete, P. Greenfield, D. Kuo and J. Jang, "Transactions in loosely coupled

distributed systems," in Proceedings of the 14th Australasian database conference,

Adelaide, Australia, 1003.

[28] S. Choi, H. Jang, H. Kim, J. Kim, S. M. Kim, J. Song and Y. J. Lee, "Maintaining

consistency under isolation relaxation of Web services transactions," Lecture Notes

in Computer Science, vol. 3806, pp. 245--257, 2005.

[29] Object Management Group, "Unified Modeling Language: Supersturcture," 05 02

2007. [Online]. Available: http://www.omg.org/spec/UML/2.1.1/. [Accessed 08 01

2013].

[30] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana, "Web service

definition language (WSDL)," 2001. [Online]. Available:

http://www.w3.org/TR/wsdl.

[31] E. F. Codd, The Relational Model for Database Management, Boston, MA:

Addison-Wesley Longman Publishing Co., Inc., 1990.

[32] P. Ziemann and M. Gogolla, "Ocl extended with temporal logic," Perspectives of

System Informatics, 2003.

[33] M. Aron, D. Sanders, P. Druschel and W. Zwaenepoel, "Scalable content-aware

request distribution in cluster-based networks servers," in Proceedings of the annual

conference on USENIX Annual Technical Conference, ser. ATEC ’00, Berkeley, CA,

USA, 2000.

www.manaraa.com

78

[34] A. Olmsted and C. Farkas, "The cost of increased transactional correctness and

durability in distributed databases," in 13th International Conference on Information

Reuse and, Los Vegas, NV, 2012.

[35] D. Long, J. Carroll and K. Stewart, "Estimating the reliability of regeneration-based

replica control protocols," IEEE Transactions on, vol. 38, pp. 1691-1702, 1989.

[36] F. Heidenreich, C. Wende and B. Demuth, "A Framework for Generating Query

Language Code," Electronic Communications of the EASST, 2007.

[37] B. Demuth, H. Hußmann and S. Loecher, "OCL as a Specification Language for

Business Rules in Database Applications," in The Unified Modeling Language.

Modeling Languages, Concepts, and Tools., Springer, 2001, pp. 104-117.

	University of South Carolina
	Scholar Commons
	2014

	Web Service Transaction Correctness
	Aspen Olmsted
	Recommended Citation

